SET B

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION **MATHEMATICS**

CLASS: IX

Sub. Code: 041

Time Allotted: 3 Hrs

23.09.2019

Max. Marks: 80

General Instructions:

1. All questions are compulsory.

The question paper consists of 40 questions divided into four sections A, B, C and D. 2. Section-A comprises 20 questions of 1 mark each; Section-B comprises 6 questions of 2 marks each; Section-C comprises 8 questions of 3 marks each and Section-D comprises 6 questions of 4 marks each.

- There is no overall choice. However, an internal choice has been provided in two questions of 2 marks 3. each, three questions of 3 marks each and two questions of 4 marks each. You have to attempt only one of the questions in all such questions.
- Use of calculator is not permitted. 4.

$SECTION - A (20 \times 1 = 20)$

Ι Multiple Choice Questions. Choose the correct answer and write the answer with the option given.

- A rational number between 0.3101 and 0.333.... is 1. (a) 0.32010010001.... (b) 0.1010010001... (c) 0.3201 (d) 1. 323232.....
- Which of the points A (0, 6), B (-2, 0), C (0, -5), D (3, 0) and E (1, 2) lie on y-axis? 2.

(a) A and C

(b) B and D

(c) A, C and E

(d) E only

Ordinate of a point is positive in 3.

(a) quadrant I only (b) quadrant II only

(c) quadrants I and II

(d) quadrants I and IV

The coefficient of the highest power of x in the polynomial $2x^3 - 4x^4 + 5x^2 - x^5 + 3$ is 4.

(a) 2

(b) -4

(c) 1

(d) -1

In \triangle ABC and \triangle PQR, if AB=QR, BC=PR and CA=PQ, then 5.

a) ΔABC≅ΔPQR

b) ΔCBA≅ΔPRQ

c) ∆BAC≅∆RPQ d) ∆PQR≅∆BCA

The graph of x = -1 is parallel to : 6.

(a) x-axis

(b) y-axis

(c) x = y

(d) neither x-axis nor y-axis

The value of $x^{a-b} \times x^{b-c} \times x^{c-a}$ is 7.

(a) 0

(b) 1

(c) 2

(d) x

50% of an angle is the supplement of 120°. The measure of the angle is: 8.

60° (a)

100° (b)

(c) 120°

(d) 30°

- 9. Which of the following expressions is a polynomial in one variable?
 - (a) $\sqrt{y} 3$
- (b) $\frac{1}{x} + x + 2$

53°

- (c) $\sqrt{2}x^2 3x + 6$
- (d) $x^2 + 6y + 10$
- 10. An exterior angle of a triangle is 95° and one of its interior opposite angles is 48°, then the other interior opposite angle is
 - (a) 42°
- (b)
- (c) 47°
- (d) 57°

II Answer the following questions:

- 11. If x 2 is a factor of polynomial $2x^2 + 3x p$, then find the value of p.
- 12. In $\triangle ABC$, $\angle A = 80^{\circ}$ and AB = AC, then find $\angle B$.
- 13. Simplify: $(625)^{\frac{-1}{4}}$
- 14. In $\triangle PQR$, $\angle P = 90^{\circ}$ and $\angle R = 50^{\circ}$. Which side of the triangle is the shortest? Give reason(s) for your answer.
- 15. Find the mirror image of the point (-4, -5) with respect to x-axis.
- 16. If (2, -3) is a solution of the equation 2y = ax + 4, then find the value of a.
- 17. In fig.1, calculate ∠ACE

- 18. Evaluate using suitable identity: 102×98
- 19. Given that $\sqrt{10} = 3.162$, find the value of $\frac{1}{\sqrt{10}}$
- 20. A wheel has six spokes equally spaced. What is the angle between two adjacent spokes?

SECTION – B (
$$6 \times 2 = 12$$
)

- 21 Find the coordinates of the point which lies on (i) x and y axes both.
 - (ii) x-axis at a distance of 8 units from the y-axis to its right.
- 22. Expand using suitable identity: $(2x \frac{1}{2}y 3z)^2$

If x + y + z = 9 and xy + yz + zx = 23 then find the value of $(x^2 + y^2 + z^2)$.

23. Express $1.4\overline{7}$ as a rational number.

Frame a linear equation in the form ax + by + c = 0 by using the given values of a, b and c. 24.

(i)
$$a = -2$$
, $b = 3$, $c = 4$

(ii)
$$a = 5, b = 0, c = 7$$

If two interior angles on the same side of a transversal intersecting two parallel lines are in the ratio 25. 4:5, then find the smaller of the two angles.

The angles of a triangle are $(x+10)^{\circ}$, $(x+40)^{\circ}$ and $(2x-30)^{\circ}$. Find the value of x and mention the type of triangle according to sides.

In $\triangle PSR$, Q is a point on SR such that PQ = PR, show that PS > PQ. 26.

$$SECTION - C (8 \times 3 = 24)$$

- Prove that angles opposite to equal sides of an isosceles triangle are equal. 27.
- Classify the following numbers as rational or irrational: 28.

a)
$$-\sqrt{0.4}$$
 b)

b)
$$\frac{\sqrt{12}}{\sqrt{3}}$$
 c) $(1 + 2\sqrt{5}) - (4 + \sqrt{5})$ d) $\frac{3}{11}$ e) $(\sqrt{5} - 3)^2$ f) 0.7356

- 29. Cost of four cakes and three cookies together is Rs.150. Write a linear equation in two variables to represent this statement. Also find three solutions of the equation.
- 30. Two line segments AB and CD intersect each other at O such that AO = OB and CO = OD.

Prove that AC = BD.

(OR)

In fig.2, $\angle CAB : \angle BAD =$

1:2, find all the interior angles of $\triangle ABC$

fig.2

- Fig.3
- 31. In fig3, an isosceles triangle ABC with AB=AC, D and E are points on BC such that BE=CD. Show that AD=AE.
- If the polynomials a $x^3 + 4x^2 + 3x 4$ and $x^3 4x + a$ leave the same remainder when divided by x 3, 32. find the value of a.

(OR)

If a+b+c=5 and ab+bc+ca=10 then find the value of $a^3+b^3+c^3-3abc$

33. Represent $\sqrt{3}$ on the number line.

Represent $\sqrt{4.8}$ on the number line.

34. Factorize: (i) $\frac{64}{27}z^3 - 1 - \frac{16}{3}z^2 + 4z$ (ii) $8x^3 + 125y^3$

SECTION – D
$$(6 \times 4 = 24)$$

35. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM=CM. Point D is joined to point B.

Show that (i)
$$\triangle AMC \cong \triangle BMD$$
 (ii) $\angle DBC = 90^{\circ}$

(OR)

 \triangle ABC and \triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC. If AD is extended to intersect BC at P, show that

- (i) ΔABD≅ΔACD
- (ii) $\triangle ABP \cong \triangle ACP$.
- 36. Factorize: $6 x^3 7 x^2 8x + 5$
- 37. Draw the graph of the equation 2x + 3y = 12. Check from the graph whether the point (3, 2) lies on the graph or not.
- 38. The sides AB and AC of ΔABC are produced to points E and D respectively. If bisectors BO and CO of ∠CBE and ∠BCD respectively meet at point O, then prove that ∠BOC = 90° ½ ∠BAC.

Fig.4

(OR)

In fig.4, PT is the bisector of \angle QPR in \triangle PQR and PS \perp QR. Find the value of x. (Show the working)

- 39. If $a + b\sqrt{3} = \frac{\sqrt{3}-1}{\sqrt{3}+1} \frac{\sqrt{3}+1}{\sqrt{3}-1}$, find the values of a and b.
- 40. Plot the points A (-3, 0), B (3, 0), C (2, 3) and D (-2, 3) on a graph. Join these points in the given order. Name the figure so obtained and also find its area.

End of the Question Paper